Table of contents

FOREWORD

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

CHAPTER 1. OVERALL INTRODUCTION

1.1 Introduction 1

1.2 Science learning and teaching: some empirical questions 1

1.3 Current perspectives on learning 3

1.4 The nature of students’ ideas: its implications for the learning and teaching process 6

1.5 Classroom communication 11

1.5.1 The “two-languages” in science classroom 11

1.5.2 The explanatory schema for phenomena 13

1.6 Statement of the problem under investigation 18

1.6.1 General definition 18

1.6.2 Research paradigm 20

1.6.3 Premises 20

1.6.4 Objectives 22

1.6.5 Methodology 23

CHAPTER 2. REVIEW OF LITERATURE ON CONCEPT
UNDERSTANDING

2.1 Concepts: some major questions 26

2.1.1 The concept of concept 26

2.1.2 Concept attainment 31

2.1.3 Concept teaching 35

2.2 How can concept understanding be investigated: a variety of methods 40

2.2.1 The interview technique 40

2.2.2 Word-association technique 44

2.2.3 Paper and pencil assessment techniques – declarative knowledge 44

2.2.4 Paper and pencil assessment techniques – procedural knowledge 45

2.3 Types of studies on understanding of students’ conceptualizations 46

2.4 Some students’ conceptualizations in science 48

CHAPTER 3 EXPERIMENT I: CONCEPTS, RELATED LITERATURE AND DESIGN

3.1 The phenomena taken for study in this experiment 55

3.2 Literature search on students’ understanding of those phenomena 57

3.3 Sample 65

3.4 Collection of data 68

3.4.1 The technique 68

3.4.2 The tasks 68

3.4.3 The administration of the instruments 69

3.5 Analysis of data 71
CHAPTER 4 EXPERIMENT I: RESULTS

4.1 Students’ frameworks

4.1.1 Expansion

4.1.2 Change of phase

4.1.3 Dissolving

4.1.4 Miscibility

4.1.5 Burning

4.1.6 “Heat” conduction

CHAPTER 5 EXPERIMENT I: CONCLUSIONS AND IMPLICATIONS

5.1 Conclusions

5.2 Implications

CHAPTER 6 EXPERIMENT II: CONCEPTS, RELATED LITERATURE AND DESIGN

6.1 Concepts

6.2 Sample

6.3 Methodology

6.3.1 Collection of data

6.3.2 Analysis of data

6.4 Scientific conceptualization of “heat”, temperature and energy
6.5 Literature search on students’ understanding of “heat”, temperature and energy 121

6.5.1 “Heat” 122
6.5.2 Temperature 124
6.5.3 Energy 126
6.5.4 Effect of schooling upon students’ understanding of “heat”, temperature and energy 128

CHAPTER 7 EXPERIMENT II: RESULTS

7.1 Overall picture of observed teaching 133
7.2 Teacher’s frameworks 134
7.2.1 “Heat” 134
7.2.2 Temperature 142
7.2.3 Energy 147
7.3 Consistency in teachers’ frameworks across students age range and curriculum topics 156

CHAPTER 8 EXPERIMENT II: SUMMARY AND COMMONALITIES

8.1 Conclusions 158
8.2 Common features in teachers’ and students’ Conceptualizations of “heat”, temperature and energy 163

CHAPTER 9 MAIN CONCLUSIONS, IMPLICATIONS AND SUGGESTIONS

9.1 Main conclusions 168
9.2 Implications of the conclusion for education
in general and for science education in particular

9.3 Implications of the use of “two languages” in instruction

9.4 Suggestions

CHAPTER 10 COMMENTS AND SUGGESTIONS FOR FURTHER RESEARCH

10.1 Comments

10.2 Suggestions for further research

REFERENCES

APPENDICES

Appendix A Tasks

Appendix B Interview

Appendix C Individual concept inventory

Appendix D Age group single concept inventory